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J .  P H Y S .  A ( G E N .  PHYS.), 1969 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Nuclear electrodisintegration with nucleon emission 

C. STRACHAN and A. WATT? 
Department of Natural Philosophy, University of Aberdeen 
MS. receiaed 28th June 1968, in  revised form 2nd Apr i l  1969 

Abstract., The emission of single nucleons by the scattering of electrons from nuclei is 
investigated. Centre-of-mass and relative coordinates are used since this avoids the 
Gartenhaus-Schwartz transformation and associated difficulties. The Hamiltonian 
describing the interaction between the electron and the nucleons is expanded in 
multipoles, and it is found possible to perform several of the summations over 
final-state angular momentum quantum numbers. The resulting formulae are applied 
to the electrodisintegration of I2C, and comparison is made with experiment. I t  is of 
interest that, as regards the position of the maximum in the cross section, agreement 
with experiment is improved by introduction of a final-state interaction, which is 
taken to be real and central. However, the magnitude of the cross section is about 
twice as large as the experimental value, even allowing for uncertainties in the ex- 
perimental result. 

1. Introduction 
The theory of the excitation of nuclei by electron scattering has been the subject of many 

investigations and of many reviews, for example that of de Forest and Walecka (1966), 
which also gives numerous references. Here we shall consider electrodisintegration, in 
particular with the emission of a single nucleon. A model is used which obeys antisym- 
metrization requirements and in which the motion of the centre of mass is included 
consistently. The  Gartenhaus-Schwartz (1957) transformation facilitates the formulation 
of translationally invariant wave functions, but the compensating penalty is that it replaces 
one-particle operators by many-particle operators (Murray and Strachan 1966). I n  
addition, the transformation is awkward for states which are not bound. Here we choose a 
model which makes the Gartenhaus-Schwartz transformation unnecessary. 

The  interaction between the electron and nucleus is expanded in multipoles. Numerical 
results are derived for 12C and comparison is made with experiment. The  effect of final- 
state interactions between the emitted nucleon and the residual nucleus is considered. 
Resonances in the cross section occur at energy transfers just greater than the thresholds for 
disintegration. 

2. Kinematics 
The  process of interest is shown in figure 1, and this figure will serve to define the 

momenta and energies occurring in the collision. The  rest mass of the electron is assumed 
to be negligible in comparison with the kinetic energies of the electron and we shall use 
units such that f i  = 1, c = 1, cm = 1 fm = 1. We take D to be the energy required 
to break N into fragments N, and Nz in their lowest energy states and E, to be the excitation 

Figure 1. 
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energy of the fragments. We shall use centre-of-mass R A ,  and relative coordinates r ,  
thereby avoiding the inconvenience of a direction-dependent energy for N, and also the use 
of the Gartenhaus-Schwartz transformation. I n  terms of p, the reduced mass, and p ,  the 
reduced momentum of the system, 

where iVA is the mass of the original nucleus of A nucleons. As the commutation relations 
of the various momentum and coordinate variables are standard we shall not quote them. 
The  total Hamiltonian is then 

P . 2  

where P A  is the total momentum of the ,4 nucleons, H, = T,  + V ,  is the internal Hamiltonian 
for the A- 1 nucleons of the residual nucleus, 

the Hamiltonian describing the motion of the single nucleon relative to the centre of mass 
of the residual nucleus. The  notation implies that V,, is a central interaction: non-central 
and residual interactions may be included in Hint. The  eigenkets of H-Hint are 

I P A ' 4  = IP*'>lc>ln> (4) 
where PA', c, n label the eigenkets of PA,  H,, H,. Since Hint depends only on the internal 
properties of the nuclear system an eigenket of H may be written, using G as a disposable 
index, 

In  evaluating the transition probability we sum the squares of the moduli of matrix elements 
of the electronic interaction over all final states IPA") of the residual nucleus. We shall 
assume that Hint may be neglected in the final states. 

The  states of the residual nucleus will now be represented by kets ~cJ&f,), where M', 
is the x component of the total angular momentum 1, of the residual nucleus, and c is a set 
of further quantum numbers required to specify the states. These kets will be used to  
represent the states of the residual nucleus and also to represent the states of these same 
A- 1 nucleons before ejection of the single particle. The states of the single particle bound 
to the A -  1 nucleons will be represented by lnljm}, where m is the x component of the 
angular momentum j and 1 = j k  is the orbital angular momentum. Any additional 
quantum numbers which may be required are denoted by n. The unbound single-particle 
states will be represented similarly by IEljm). 

The unbound single-particle states IEZjm} satisfy 

H ,  I Eljm ) = E 1 Eljm >. 

R d r )  = aj&) + bn&), P = (2pE)' 

(6) 

( 7 )  

The radial part of the corresponding wave function is 

for Y > y o ,  a region in which V,(Y) is assumed to be zero. R e  have 

7 7  

/rRE,l*(r)R, , (~)~2 dr = ( l a [ *  + ] b i z )  -a@-p ' ) .  2P2 (8) 

We set jaI2+ = 1 in all cases. 
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I n  writing kets of the nuclear system we shall leave out the eigenkets of total linear 
momentum since they always give a &function in momentum. The  basic kets for the final 
nuclear system are required to belong to definite total angular momentum, and we write 

IcJ,; El j ;  JF&lF} = 2 ( J c l ~ c j m ~ J c j J ~ ~ ~ ~ ) ~ c J c M c } ~ E l j m ) .  (9) 
M,m 

Similarly basic kets for the initial state are 

IcJ,; nl j ;  JIIWI) = 2 (JciWcjm~J,jJIMI)~cJcMc)~nljm> (10) 
M,m 

and the complete initial state will be 

] I ;  J I f W I )  = 2 A(cJ,; n l j ;  I)IcJ,;nlj; J I M I )  (11) 
cJcn13 

where the coefficients A(cJ,; nlj;  I )  are obtained by diagonalizing the matrix for H in the 
space spanned by lcJ,; nlj; JILW1). It is to be expected that in practice only a few such 
basic kets will be considered, so that H is diagonalized in a very limited subspace as in the 
Nilsson (1955) model or in the excited core model of Thankappan (1966). It can be shown 
(Messiah 1961, p. 734) that the density of final states is 

for the nuclear system. The  density of states for the electron is well known. 

3. The interaction Hamiltonian 
The interaction Hamiltonian H’ corresponding to the exchange of one quantum between 

electron and nucleus has been given by MCVOY and Van Hove (1962) and we use the 
notation given there. The  ri and p ,  are not suitable operators in our treatment and we 
therefore express them in terms of centre-of-mass and relative variables together with 
RA-1, PA-l referring to the residual nucleus and A-  2 coordinates and momenta internal to 
the residual nucleus. 

We first consider the part of H’ referring to particle 1, i.e. the ejected nucleon. Since 

r M A -  1 rl = ( r , -RA)+RA = RA+- 
1WA 

a matrix element of exp (iq.rl) between a final state IPA’c’n’) and the initial state of (11) is 

(PAI)c’n’I exp(iq. r)lPA’: I }  = 6(P,-’q-P,’) 2 (n’l exp(iQ. r)ln)A(c’n; I ) .  (14) 

The  operator contains no part which operates on the states of the A - 1 particles, and so the 
matrix element has reduced to some single-particle matrix elements. The  state of the 
other A- 1 particles cannot change; if A(c’n; I) = 0 the above matrix element is zero. 
We have defined 

n 

The remainder of the analysis is along straightforward lines and is given by Watt (1967). 
At present we consider only interactions with the nucleon to be expelled, i.e. direct inter- 
actions. The  other interactions will be examined in a subsequent paper (Watt 1969) and 
will be shown to be small. 
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Considering only direct interactions, and omitting the centre-of-mass dependence, 
we have 

I pexp(iQ.r)+exp(iQ.r)p+---qexp(iQ.  r )  I. 
lW* I 
1W 

-a. E(-) exp(iQ . r ) .  
2144 1 - 1/A 

We have written e, (U, Q for the charge, magnetic moment and spin operators for the single 
particle, and have assumed that PA‘ = 0, i.e. that the initial nucleus is at rest in the labora- 
tory. The interaction H‘ may now be expanded in multipoles in well-known form and 
the cross section obtained in terms of two form factors (de Forest and N’alecka 1966). 

Finally, we obtain 

2 j (JF~WFSfIH’IJI~IS*}I2 = 4n C[I(JFI;’~(cX)IIJI)i2VL(o) 
MIMF h 
S1Sr 

+ { I  (JF I ~ lV(Jw I iJI) I 
f l(JFI llu(lwA)l IJI)121>vT(e)] (17) 

where IS,) and IS,} are spinors for initial and final electron states, k f ( A )  are the usual 
multipole operators and V,, VT are the usual angle factors. 

4. The cross section 
The cross section may be written as 

4a2kf2 U2 COS2&0 
U M  = 4 coszp = 

Qu 4k,2 sin4i6’ 

is the Mott cross section for scattering from a point charge, 

j(4; Elj; JFI pf(cA)/ I1;  JI>12f2(4u2) 
P N ( E )  2J1+1 P L I 2  = 2 4 7 7 2  

J ~ i l  h 

FL and FT will be called the longitudinal and transverse form factors. 
For any single-particle tensor operator of rank A, 

(c.7,; Elj; JFI IM(A)I I1;JI}= C 
c’J,’ n’l‘j’ 

A(c’JC’; n‘l‘j’; I )  (cJ,; Elj; JFI llkT(A)ll~‘J~’; n‘l’j‘; J I )  
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Using the result (Edmonds 1957) 
1 

8 3 , 3 n  
j J F  J ,  i J F  Jc c(2JF+ [ J ,  j l  ) j,, 1 = - 2 j ’+  1 

J P  
we obtain 

= A(cJc ;  n‘l’j’; I)A*(cJ,;  n“2‘y’; I )  I(cJc; Elj; JFl:J4h)]lI;  JdI2 
L 

n”i” 
2J1+ 1 n‘1’5’1 j 

c 
J F l l  

( - ) Z ( J , + j ’ +  J F + N  
X (El j ,  ]iV(h)I ln’l’j’) 

2j’ + 1 
x (Eljl I h Z ( X )  j In”l’lj‘)*. (24) 

In  all cases the reduced matrix elements of the single-particle operators appearing in 
equation (24)  may be expressed entirely in terms of radial integrals. However, the algebra is 
different for each type of operator, and we shall consider only the case of the Coulomb 
operator in detail. Here the operator acts only on the spatial coordinates and not on the 
spin, so that (Edmonds 1957) 

( ~ ~ ~ ~ ~ - ~ ( c ~ ) ~ ~ n ’ ~ ’ j ’ )  = (-)‘+‘”.‘”i(~j+1)(2j’+1)}l!~~.~ l j l  I ’)(Eill~M(ch)lln’2’). 
1 z x  J 

x (El  j 1 iM( ch) 1 In ’ 2 ’ )  (El I I iM(cX) I 1 n”l”), 

The  summation over j is now possible: 

In  this last expression the reduced matrix elements are integrals over the spatial coordinates. 
Using the explicit form for the Coulomb operator and the expression for the reduced 
matrix element of a spherical harmonic (Edmonds 1957), 

(EllIM(ch)j/n’Z’) = 

(28)  

x (El  I &( CA)  In ’ Z’ ) (  El i&(ch) I a’’ Z’) xy 1x1’). 
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We have introduced the notation 

(21 + 1)(2h + 1)(21’ + 1) 1 x I‘ 1 (0 0 01 
xy 1x1’) = - 

21’+ v 1 4n 
and 

The  coefficient 
algebra and the reduced matrix elements of the spin and angular functions. 

is completely determined, and has appeared from the angular momentum 

We shall assume that, for a given value of I’, different values of n’ do not occur. Hence 

T h e  summation over Z is strictly limited by the angular momentum coefficient which 

Thus 1 = h + Z’, h + I’ - 1, .. ,) X - I‘ by the usual triangle inequality, but contains 

also I +  A +  I’ must be even, for (,!: i) vanishes otherwise. For I‘ = 0, only 1 = h contri- 

(b“, ‘01. 
\ -  - Y ,  

butes, while for I’ = 1, only 1 = A +  1 give non-zero terms. For given n’ and Z’,,‘ = 1’2 .$ 
and, even in quite complicated nuclear models, only one or two sets (n’ l’j’} will appear. 
In  practice, therefore, the summations in equation (32)  are expected to present little trouble. 

T o  evaluate FL we must sum over A, which goes from 0 to crj. It turns out, in the calcula- 
tions performed here, that the terms fall off very rapidly, and the first five terms contain 
most of the sum. 

The  electric and magnetic reduced matrix elements may be written in a form analogous 
to expression (32).  The calculation of the X@) and Sm) coefficients is more complicated 
than the calculation of X ( c ) ,  However, the summation overj  may be performed in all cases, 
giving a 81,i,, exactly as for X @ ) .  Also it has been assumed that, for given Z’, only one n’ 
occurs, just as before. This assumption is, of course, by no means necessary. It is used 
merely to simplify the form of equation (30).  The angular momentum factors which we 
require are unaffected by this assumption. 

Because of the complicated form of the X@) and X(m) coefficients, they will not be given 
here. They are given in a thesis by one of the authors (Watt 1967). In  the particular case 
of I2C, which is assumed to have two protons and two neutrons in the lsl /2 shell and four 
protons and four neutrons in the lp3 /2  shell, the total cross section will be 

The  results of the simple model are correct for shells with one particle only and for closed 
shells. I n  other cases antisymmetrization is important. 

5. No final-state interaction 
It is convenient to collect the results which are obtained if one assumes that the emitted 

nucleon does not interact with the residual nucleus. The  nucleon wave function may be 
taken as a plane wave, exp(ip.r) in the final state, and we shall use at present the harmonic 
oscillator 1s-shell wave function ( ~ / r ) ~ / ~ e x p (  - ~ K P )  for the initial state. When matrix 
elements of H’ (equation (16)) are taken between these initial and final states, and, if we 
sum over final and average over initial electron states, the cross section may be written 
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where uM is the Mott scattering cross section and FL' and FTf will be referred to as longi- 
tudinal and transverse form factors respectively. The  density of final states for the nuclear 
system is now 

Since 

(2 IFLfI2 alJexp(-ip.r)exp(iQ.r) exp( -&K?)  d3r 

a e x p ,  f -  --) (P-QY 
K 

we obtain, after integrating over directions of p ,  

where 

Now, in our problem, 2 p Q l ~  $1, so that we replace sinh(2pQ/~) by $exp(2pQ/~), 
obtaining 

for the square of the longitudinal form factor for two identical particles of charge e, and 
magnetic moment ,U, filling the Is shell. If we make the same approximation as above, the 
transverse form factor is 

In  our calculations on I2C, p 5 2 ,  K N 0.3, Q N 1.2. Hence the first term in curly brackets 
is much smaller than the other. This agrees with Czyz's conclusion that the current part 
of the operator is much less important than the magnetic moment part (Czyz 1963). 

Thus, to a good approximation ( N lo%), the cross section for 1s-shell particles is 

d2 u 

dk, dQ, 

where C, is independent of p. Similarly, for lp-shell nucleons 

d2 u (P - Q)' (P - Q)' 
-= { l +  
dk, dQ, K 

In  the circumstances considered later, Q and hence Cs, Cp are reasonably constant over 
the entire spectrum, while p varies from 0 to about 2, and so the shape of the spectrum is 
determined largely by the p - Q terms in the above expressions. 

6. Electrodisintegration of carbon 
The quasi-elastic peak has been studied in carbon, and so we have performed calcula- 

tions for this nucleus. We choose the simplest shell model to describe the nucleus, assuming 
that the lsl,2 and lp3/2 shells are completely filled and that all other shells are empty. We 
are therefore interested in coefficients of the type appearing in equation (30) with I' = 0, 1, 
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and these may be simplified by evaluation of the 3-j and 6-j symbols. The  results are given 
below. 

1' = 0 

I '  = 1 

1 3 ( h - l ) ( X + l )  
+-p2- 81, ?. - 26i . f  471 8 2h-1 

The radial integrals such as expression (28) may be evaluated as soon as initial- and 
final-state wave functions are found. Harmonic oscillator wave functions were used for the 
initial state. Final-state wave functions were found by assuming that the nucleon-nucleus 
interaction could be described by a finite real central potential well. A solution of the 
resulting differential equation was found numerically. 

The  required integrals may be expressed in terms of the set 

I(1, A, c) = REi(y)j).(&T) exp ( - & K T ~ ) Y ~  dr (44) sa 
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where REl(r) is the radial part of the wave function for the emitted particle, and K is the 
harmonic oscillator constant. For example, n' = 1 and I' = 0 for 1s-shell nucleons, and so 

Using 

.. 

we obtain, for example, 

I(1, A, 2) = - ' {I(l ,h-l ,3)+I(Z,A+1,3)}.  
2X+1 (47) 

By using this and similar relations, all the required integrals may be found from the sets 
I( A, X 5 1, 3) and I( A, h rt 1, 5 ) ,  h = 0, 1, ... CO. These integrals were evaluated numerically. 

The harmonic oscillator constant K is found to be 0.364 from elastic electron scattering 
(Ehrenberg 1959, Crannell1966). I n  the usual shell model each nucleon moves in a potential 
well fixed in space, the centre of the well being fixed at the mean position of the centre 
of mass, R A .  However, we are interested in relative coordinates, r = r l -RA- l ,  i.e. 
r = {A/(A-l)}  ( r - R A ) ,  and so we take 

K = ( y ) 2 0 * 3 6 4  = 0.3. 

This  adjustment is similar to that given by Tassie and Barker (1958) for the harmonic 
oscillator model. 

The  effect of varying K has not been investigated in great detail, but calculations for 
K = 0.4 give a hump which is slightly flatter and broader than that for K = 0.3. These 
conclusions agree with those of Griffy et al. (1966). 

The  binding energies were taken to be 15.9 MeV for lp-shell protons, 18.7 >rev for 
lp-shell neutrons, 30.9 MeV for ls-shell protons and 33.7 MeV for ls-shell neutrons (Ajzen- 
berg and Lauritsen 1955, Jacob and Maris 1966). The  nucleon form factors were taken to be 
(Elton 1961) 

f ( q 2 )  = exp (- T0*43). q2 
(49) 

The  case of no final-state interaction discussed above was used in two ways. From 
equations (32) and (30) we obtain for ls-shell particles 

* 2X+1 
x 4 n  2- P(X, A ,  2). 

% = O  4n 
Comparison with equation (39) allows us to decide how many terms of the infinite series are 
needed to give a good approximation to the sum. This also tells us how many terms are 
important in calculations of the type carried out by Eisenberg (1963). The  number required 
varies quite rapidly withp; in our calculations, the first ten terms were found to be adequate 
even at large values of p ( N 2.2). 

Bounin and Bishop (1961) have performed an experiment in which electrons of energy 
194 MeV were scattered from carbon. The  scattering angle was 135", and only the scattered 
electrons were observed. Their results are illustrated in figure 2. Our arbitrary unit of cross 
section is expected to  be 1 nbn sr-l Mev-I, to within about 200;,. 

We have considered electron scattering under these conditions to effect some comparison 
with experiment. Several final-state interactions were considered. The  case V = 0 was 
used to allow the comparisons discussed above to be made, and to check that the programme 
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was working properly. I n  addition, square wells and Woods-Saxon potentials of different 
depths and radii were used. 

Results for a square well of depth 20 kIev and radius 2.9 fm are given in detail in figure 3 .  
I t  is interesting to note that neutron emission is quite important, contributing about 2076 
of the total cross section. The longitudinal form factors for neutron emission are almost 
(but not quite) zero, and the transverse form factors for neutrons are typically half as large 
as the transverse form factors for protons. The  total cross section is a roughly symmetrical 
hump of maximum height 6.4 nbn sr-l at 128 MeV, and width 44 MeV at half- 
maximum. There are also two sharp quite large peaks at 170 and 157 MeV respectively. 
These are due to single-particle resonances in the potential well. Unfortunately, direct 
knockout is not a good approximation at these low energies, because there will be a large 
probability that the nucleon will lose energy to the residual nucleus, and a more detailed 
approach would be required to  treat this region properly (Raphael and uberall 1966, 
de Forest 1967). These resonances are interesting features of the cross section, but we do 
not concern ourselves with them here. 

0- 
50 100 I50 

kf ( M e V )  

Figure 2 .  Experimental results for 12C 
(Bounin and Bishop 1961). A smooth 
curve has been drawn by hand through 
their results to obtain the above graph: 
The abscissa gives the energy of the 
scattered electron, and the ordinate is 
calibrated in arbitrary units, which are 
expected to be close to 1 nbn sr-I 

00 I! 
kf ( M e V )  

Figure 3. Calculated cross sections. 
Curve A gives the total cross section in 
the case of no final-state interaction. 
All other curves were obtained using a 
square-well interaction of radius 2.9 fm 
and depth 20 MeV: B, total cross section; 
C, D, contributionsfrom lp -  and 1 s-shell 
protons; E, F, contributions from Ip- 

and 1s-shell neutrons. 

The  absolute magnitude of the cross section as calculated is larger than the experimental 
result by a factor of about 1-8. We have also performed calculations to compare with the 
results of Leiss and Taylor (quoted by Czyz 1963), and the same discrepancy appears. The 
reason for this may be that the approximation of neglecting the two-body operators in the 
interaction Hamiltonian is not a good one, and that their inclusion will reduce the cross 
section. This is also suggested by the sum rule of McVoy and Van Hove (1962). If our 
cross section, obtained from equation (37), is integrated over final electron energies, only 
the diagonal terms of the sum rule are obtained. Inclusion of the two-body operators in the 
interaction Hamiltonian should give the off-diagonal terms, decreasing the sum-rule 
result and hence the cross section of interest here. Calculations are now in progress which 
include these extra terms. 

We now consider the effects of different final-state interactions. The  main results are 
collected in table 1. We have not presented graphs for all the final-state interactions con- 
sidered, for they all look rather similar to the two curves shown in figure 3. The  position 
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Type of 
interaction 

square well 
square well 
square well 

Table 1 

V R a Peak Cross section 
(MeV) (fm) (fm) (MeV) at peak Width 

0 
20 2.9 
40 2.9 
20 2.7 

122 6.35 60 
129 6-55 49 
137 6.45 42 
129 6.55 48 

Wo o ds-S axon 20 2.9 0.5 128 6.55 56 
Woods-Saxon 40 2.9 0.5 136 6.60 44 
Woods-Saxon 20 2 7  0.5 128 6.55 54 

Experiment 130 3.50 70 

V and R are the depths and radii of the potential wells and the ‘skin thickness’ of the Woods- 
Saxon potential is a. The form of the Woods-Saxon potential is 

- v  
1 + exp{(r - R) / )a  

V(r) = 

and width of the quasi-elastic peak is rather sensitive to the final-state interaction. It can 
be seen that the position of the peak moves to the right (i.e. to the region of smaller energy 
loss by the electron) as the depth of the potential is increased. This can be understood 
qualitatively as follows. If we refer again to $ 5 ,  the final-state wave function is taken to be 
exp(ip.r), wherep is the momentum of the nucleus far from the residual nucleus. However, 
in calculating the matrix elements, such as those in equation (39), it would be better to 
replacep by an effective momentum,p’ say, inside the nucleus. Butp’ will be greater than 
p ,  the relation being roughly 

p ‘ 2  = p2 + 2A!L7V (51) 

where V is some average depth of the potential well over the nuclear volume. Since the 
cross section will now be proportional to exp {- (p’ - Q ) 2 / ~ } ,  which peaks at p‘ = Q, the 
peak will move to the right as V increases. It is found that, with V = 10 MeV in equation (51), 
the cross section obtained from expression (37) with p’ replacing p is virtually identical 
with the total cross section for the square well of depth 20 MeV shown in figure 3 ,  except, of 
course, that no resonances occur. Thus we can simulate final-state interactions in a simple 
way if great detail is not required. By choosing a well of suitable depth, it is possible to fit 
the position of the peak. 

I n  all cases the width of the calculated curve is too small. The  width can be fitted by 
using an energy-dependent potential, the depth increasing from 0 for high proton energies 
to about 50 MeV for low proton energies. 
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